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Most of the problems of modern engineering are solved using numerical methods. In order to use a numerical
method the first step that must be performed is to generate a numerical model that contains all the input
data in terms of geometry, material data, boundary conditions (loads and support). Ideally a structure must
be defined only using hexahedral elements that are capable to provide the best results. This paper presents
a method for generation a fully hexahedral finite elements model using a grid based procedure. The method
is a good support for the engineering involved in product design. An application to a plastic manufactured part
is presented. The results obtained using the all hexahedral finite elements models are compared with the
results obtained using a numerical model generated using conventional techniques.
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Most of the problems of modern engineering are solved
using numerical methods. In order to use a numerical
method the first step that must be performed is to generate
a numerical model that contains all the input data in terms
of geometry, material data, boundary conditions (loads and
support).

The results provided using a numerical method are in
most of the cases influenced by the numerical model. This
is especially the case of finite elements method [1].

Although the material data, boundary conditions, parts’
interferences may be correctly specified by the user the
results may be influenced by the definition and quality of
the finite elements model. There are very strict
requirements regarding the shape and type of finite
elements used to build the model for simulations
(applications of the numerical methods).

Ideally a structure must be defined only using
hexahedral elements that are capable to provide the best
results and there are commercial software packages that
can provide these numerical models.

There are many cases when the geometrical model
does not provide enough support for the user to generate
an all hexahedral finite elements model. In other cases
the geometrical model is very complex and the time
required for the generation of the finite elements model
using conventional techniques can be time consuming. If
the design process is not completed and preliminary
analyses are required then the time cost increases even
more. This is the case of parts manufactured using plastic,
thermoplastics or other similar materials. For the engineers
involved in process of analyzing this kind of parts a useful
method to generate the finite elements model is presented.

This paper presents a method for generation a fully
hexahedral finite elements model using a grid based
procedure [2-9]. One of the major advantages of the
present method is that the numerical model can be build
using a user specified element size required in order to
decrease the computational resources in case of time
explicit applications. On the other hand the method is quite
simple and it can be easily implemented or further
developed.

Hexahedral finite elements mesh generation method
The method used to generate the all hexahedral finite

elements model of the structure consists in a number of
procedures used for reading the geometrical model,
definition of the intersection planes and intersection
contours, definition of the contour grid based quadrilateral
mesh, definition of the section mesh, definition of the
hexahedral finite elements and export of the numerical
model [2, 5, 7] useful for parts with complex geometrical
model like components manufactured using plastic and
other similar materials.

These procedures were implemented in a custom
written code using Matlab [10].

The structure of the program is presented in figure 1.

Input of the geometry
The geometrical model in this file format is converted

(using ParaView) in PLY (polygon) file format using an
ASCII format is selected for output.

A PLY file consists of a header followed by a list of vertices
and then a list of polygons. The header specifies how many
vertices and polygons are in the file, and also states what
properties are associated with each vertex, such as (x, y,
z) coordinates, normals and colour. The polygon faces are
simply lists of indices into the vertex list, and each face
begins with a count of the number of elements in each list.
The vertices are identified and the patches are constructed.

Using the coordinates of the vertices, the dimensions of
the model can be computed

        

and also the geometrical centre of the model is identified.

(2)

A reference plane is constructed through this point. All
the operations are performed with respect to the global
orthogonal coordinate system. Thus, is some cases, there

  (1)

* Tel.: 0722983592



MATERIALE PLASTICE ♦ 47♦ Nr. 1 ♦ 2010 95

may be necessary to align the part in order to obtain the
best results because the cutting planes are parallel with
the global OXY  reference and these planes are equally
spaced along OZ  axis.

Definition of the cutting sections
The user can specify the size of the finite element thus

the number of cutting planes (equation 4) that depends on
the model dimensions and the specified element size.

         (3)

(4)

The cutting plane is defined using three points. The first
point has the coordinates po = (xc, yc, z)  where z  is
measured along OZ axis that is defined by zc and the
number of the current cutting plane. The second point has
the coordinates p1 = (xc+xsize / 2, yc, z) and the third point
has the following coordinates  p2 = (xc, yc / 2, z).

The geometrical mode is composed of triangular
patches. Using the vertices defining these patches three
lines can be constructed.

Only the lines that are intersecting the cutting plane are
identified and used to find the intersection points.

The parametric equation of the intersection between a
line and a plane is used in order to define the contour cut by
the plane.

The equation of a line passing through two vertices  vi =
(xi, yi, zi) and vj = (xj, yj, zj)of a face defined in the model is

 (5)

The parametric equation of the plane is:

(6)

The point at which the line intersects the plane is
therefore described by setting the line equal to the plane in
the parametric equation:

                   (7)

which can be expressed in matrix form as:

     (8)

Equation is solved and with respect to t  from the solution
obtained, the point of intersection is then equal to:

(9)

Figure 2 presents the reference plane and the current
cutting plane, as well as the intersection points that were
computed.

Fig. 1. Procedures used to generate the hexahedral finite elements model

Fig. 2. Definition of the cutting plane and intersection points
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From the total of intersection points identified for the
position of the current cutting plane a number of ordered
lists are created and closed contours are identified.

A given section can have a number of contours. Also,
for each triangular patch there are two vertices that are
shared with the neighbors. Therefore, for each intersection
line (that as mentioned before, may belong to two triangular
patches) two coincident intersection points are identified.
In the list with the intersection points the triangular patch
used to generate it is stored. This way the intersection line
that connects the intersection points for each triangular
patch is defined. By now the intersection lines are not sorted
because the intersection points were generated according
to the identification number (or list entry) of the triangular
patch.

Two elements are required to create a continuous
contour. The first element is that the connections between
the contour lines are represented by coincident intersection
points. The second element is represented by the other
intersection point that defines the intersection line. Figure
3 presents the method used to generate the continuous
contour.

Definition of the grid based quad and hex elements
The hexahedral elements are generated from

quadrilateral elements that are generated for each
intersection plane. A grid with the dimensions defined by
the model size and elements size is generated. Actually,
the same grid will be used for each cutting plane. It is
centered with respect to the model centre and the size is
defined by the overall model dimensions.

  The contour data are loaded and analyzed in order to
generate the quadrilateral elements. The grid cells
containing intersection points are marked. The method is
simplified because once an intersection point is inside a
grid cell the cell is selected. The position or number of
intersection points that are inside a cell does not affect the
selection of the cell.

As the contour is closed so the grid that contains the
intersection points must be. In figure 7a it can be noticed
that only a few cells will be selected. Therefore the number
of points that are mapped on the grid must be
supplemented. The spanning between the marked grid cells

Fig. 3. Method for generating the continuous contour

If a contour is closed, the coordinates of the first point in
the list must be the same with the coordinates of the last
point in the list. Otherwise, if no points are added during a
search cycle the contour is open. Figure 4 presents a
structure intersected by a number of cutting planes while
figure 5 presents the lines that are joining the intersection
points before ordering them.

Once the succession of intersection points is determined
(fig. 6a) the duplicates are removed from the list and the
continuous closed contour is identified (fig. 6b).

The results are saved as a list of points for each individual
contour. (e.g. for figure 6b a number of 5 files with the
contour points will be created).

Fig. 4. Cutting planes

Fig. 5. Intersection points

Fig. 6. Contours definition
a) Continuous contour, b) Duplicate intersection points are

removed
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is analyzed and, if in horizontal or vertical direction there is
a gap, of one or more cells, supplementary points are
added (fig. 7b).

At the beginning, to all grid cells a 0 value is assigned.
The cells containing intersection points will have the 1
value assigned and the grid map of the contour is defined.
Using this map, the cells that are inside the contour are
identified and these cells will have also 1 assigned. Each
line containing grid cells is analyzed and the grid cells
containing contour points that were previously identified
are used to check where the cells should have a value of 1
assigned. The cells colored with black are the ones that
contain contour points, while the grid cells colored in yellow
are those defined by analyzing the grid lines.

One of the major advantages is that the same method
can be used for all the contours defined and a procedure
will be further presented to identify the voids or empty
spaces in the model.

For the structure presented in figure 4 and the contours
identified in figure 6b the grid maps corresponding to each
contour are presented in figure 8.

The individual grid maps are saved and then added in
order to obtain the final map of the current section (fig. 9).
Odd number (1,3,5,…) means that a finite element will be
generated for the corresponding grid cell and 1 will be
assigned on the final grid map. Even number (2,4,6,…)
means that an empty space exist for the corresponding
grid cell and 0 will be assigned for the final grid map.

Using the grid map and the defined finite elements size
the hexahedral finite elements are generated and saved in
the output file. The resultant finite elements model and the
associated final grid map are presented in figure 10.

The final finite elements model is generated using the
same procedure. The novelty on the method resides in the
addition procedure of the individual grid maps of the

contours identified on the current section. Therefore there
are not required any specialized algorithms that must
identify the relative position of the contours.

Applications
The mesh generation method is used to generate the

numerical model of a plastic handle that is used for a
vehicle’s hood latch assembly. The handle is operated by
hand in order to ensure the full release of the hood from the
vehicle’s engine compartment (fig. 11).

The numerical model of the plastic handle was
generated using the hexahedral finite elements generation
method (figure 12a) described above and using a
commercial software (fig. 12b).

The method for generating the geometry based
numerical model consists in defining the closed volume of
the part and then meshing it using tetrahedral elements. It
is true that the commercial software has the capabilities
to generate also hexahedral elements but in this case the
model generation process is time consuming because the

Fig. 7. Identification of the grid cells containing contour points
a) initial contour points; b) supplemented contour points

Fig. 8. Grid maps associated with the contours
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Fig. 9. Definition of the final grid map of the section

Fig. 10. Finite elements model and the associated grid map

Fig. 12. Finite elements models
a) Geometrical model (.ply format); b) All hexahedral elements c) Geometry based model (tetra)

Fig. 11. Plastic handle and the safety hook. Left
corner – Hood latch assembly

user must perform a lot of activities. As the method for all
hexahedral finite elements model is automatic also for
the commercial software the automatic method for mesh
generation was selected. The all hexahedral model was
generated using an element size of 0.75 mm and a total
number of 62912 elements and 92262 nodes were

obtained. The tetrahedral model was generated using all
the geometrical features of the part and a total number of
174768 elements and 41879 nodes were obtained. In order
to compare the result using the hexahedral finite elements
model and the tetrahedral finite elements model two
simulation cases were defined. For the first simulation case
the tip of the handle was loaded with an user defined force.
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For the second case a drop test simulation was performed.
The results were compared in terms of total

displacement, stress (Von Mises) and time required to solve
the numerical model (runtime).

Case 1. User defined load
Regarding the boundary conditions it was stated that

the clamping section of the handle was fixed and a load of
10N was applied on the tip of the handle on a normal
direction to the top surface of it.

The numerical models were solved using LS-Dyna
software [11]. The solver can work using   both implicit
and explicit calculation methods.

For this case, when a specific load was applied, the
solver was set to run with the implicit solver formulation.

Table 2
RESULTS: TOTAL DISPLACEMENT
AND VON MISES STRESS (ERROR)

Table 1
RESULTS: TOTAL DISPLACEMENT AND VON MISES

STRESS (NOMINAL VALUES)

Although the method is implicit the solution is not obtained
in one step. The structure was loaded from 0 to the nominal
force value in a user specified time interval.

The material model is elastic plastic with kinematic
hardening. The density of the material is ρ = 2000 kg/m3,
Young’s modulus is E = 1500 MPa,  yield strength σο = 50
MPa and the hardening slope has a value of Et = 50 MPa.

It is know that in finite elements method the calculation
is performed using the nodes while the elements are used
to put into relations the corresponding nodes. Therefore
the nodal result depend on the finite elements
mathematical model.

In LS-Dyna there are multiple possibilities to assign to a
specific finite element a mathematical formulation. Thus,
for the hexahedral model ELFORM1 1 (constant stress) and
ELFORM 2 (fully integrated) mathematical formulations

Fig. 13. Total displacement
a) Hex finite elements (ELFORM 2);
 b) Hex finite elements (ELFORM 1);
c) Tetra finite elements (ELFORM 4);
d) Tetra finite elements (ELFORM 10)

Fig.14. Stress (Von Mises)
a) Hex finite elements (ELFORM 2);
b) Hex finite elements (ELFORM 1);
c) Tetra finite elements (ELFORM 4);

d) Tetra finite elements (ELFORM 10);

99
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for the elements were selected. For the tetrahedral model
ELFORM 4 (fully integrated) and ELFORM 10 (1 point)
mathematical formulations for the elements were
selected.

The results were evaluated in terms of total
displacement, Von Mises stress and total runtime. Table 1
presents the results obtained running these models.

In order to evaluate the result the averaged displacement
and the averaged stress were used as a reference and the
results compared.

Figure 13 presents the displacements maps for the
models that were analysed.

Figure 14 presents the stress (Von Mises) maps for the
models that were analysed.

Figure 15 presents a detailed view of the stress (Von
Mises) iso-contours. It worth noticing that the areas with
the high stress values are in good agreement for all models.

The models were solved using a PC machine with and
Intel®Core2DuoTM at 2.4 GHz CPU and 2 Gb of RAM. The
total runtime for each model is presented in table 3 as an
interesting parameter that must be considered when a
numerical model is developed. It can be noticed that the
hexahedral models required a less runtime for both default

Fig.15. Stress (Von Mises – Averaged
result. Iso - Contours)

a) Hex finite elements (ELFORM 2);
b) Hex finite elements (ELFORM 1);
c) Tetra finite elements (ELFORM 4);

d) Tetra finite elements (ELFORM 10);

formulation (ELFORM 1) and for the fully integrated
formulation (ELFORM 2).

Case 2. Drop test
For this case the structure was dropped over a flat rigid

surface. In order to define a more efficient simulation model
the part was positioned close to the rigid surface an initial
velocity of 

sm5

 was applied to the modes. This
corresponds to dropping the part from an initial height of

25.1  meters.
In these cases the simulations were performed using

the explicit solver implemented in LS-Dyna. Thus the time
step becomes an important parameter that must be
considered. Given the simulation time (required by the
simulated event) the time step defines the total runtime
required for the machine to solve the problem. Thus a larger
time step will give a smaller number of solution steps and
this way the runtime decreases. A very small time step
can lead to unreasonable runtimes and to a waste of
hardware resources.

Using the hexahedral finite elements mesh generation
method the numerical model can be developed having as
an reference an user specified time step.

Fig.16. Drop test results. a) kinetic energy; b) contact force

Table 3
RUNTIME – USED DEFINED LOAD
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Fig. 17. Stress (Von Mises)
distribution a)hexahedral model;

b) tetrahedral model

Table 4
RUNTIME – DROP TEST

For 8 node solid elements (hexahedral) the time step is
defined as:

           (10)

where:
eV  is the element’s volume (the minimum volume is

considered),
max,eA  is the maximum area of the selected element

c  is the sound speed (for the corresponding material
and element type).

For the 4 node solid element (tetrahedral) the time step
is defined as:

                        (11)

where lc  is the element altitude.
The kinetic energy and the contact force were evaluated

using the numerical model. Results are presented in figure
17.

There are good similarities between the kinetic energy
results obtained using the tetrahedral model and the
hexahedral finite elements model.

Regarding the wall force for both cases the same peak
force was recorded. Also the time when the peak value
was recorded is the same and more of the contact time
with the rigid wall is the same.

Figure 18 presents the stress contour after the contact
with the rigid wall.

Table 4 presents the results of the simulation in terms of
runtime and time required by the CPU to process the
elements. The hexahedral model due to the larger elements
size compared to the tetrahedral model required a shorter
time to solve. Given the same rate of writing data on the
disk it can be noticed that the total time to process the
model is even shorter for the hexahedral model.

Conclusions
The paper presents a method to generate a complete

hexahedral finite elements model. The procedure was
developed and implemented using Matlab. The user can
specify the geometrical model to be used (in .ply file
format), specify the element size and can easily obtain the
finite elements model. Based on a grid procedure the
program cuts the geometrical model with parallel planes,

extract the contour and generates the finite elements
model. For the geometrical model used as an application
in this paper the time required to generate the finite
elements model with a size of 0.75 mm was of  24 min
and 4 s,  that is a reasonable time considering the fact that
the user has not to support the meshing process and in this
state the custom code is not yet optimized for parallel
processing.

The performance and the results obtained using the
hexahedral model were compared with those obtained
using the hexahedral model (generated also automatically
by a commercially available software). Two load cases
were analyzed. The first load case consisted in applying a
force of 10 N on the tip of the handle. For the second load
case a drop test like analysis was performed.

The results were analyzed and compared and good
agreement between the results was found.

Therefore it can be stated that the present method is
useful to generate the finite elements model when the
tetrahedral finite element is required and even more when
the total runtime has to be reasonable. It will be further
improved in order to obtain better simulation models [12-
14]. Also the finite elements generation method can be
linked to commercially available of proprietary solvers in
order to increase the applications range [15-17]. The
method can be applied to generate finite elements for
mechanical assemblies for various applications [18] or for
multiphase materials [19, 20].

Some aspects regarding the subject were discused in
[21-23].
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